First Characterisation of Volatile Organic Compounds Emitted by Banana Plants

نویسندگان

  • Chadi Berhal
  • Caroline De Clerck
  • Marie-Laure Fauconnier
  • Carolina Levicek
  • Antoine Boullis
  • Amine Kaddes
  • Haïssam M. Jijakli
  • François Verheggen
  • Sébastien Massart
چکیده

Banana (Musa sp.) ranks fourth in term of worldwide fruit production, and has economical and nutritional key values. The Cavendish cultivars correspond to more than 90% of the production of dessert banana while cooking cultivars are widely consumed locally around the banana belt production area. Many plants, if not all, produce Volatile Organic Compounds (VOCs) as a means of communication with their environment. Although flower and fruit VOCs have been studied for banana, the VOCs produced by the plant have never been identified despite their importance in plant health and development. A volatile collection methodology was optimized to improve the sensitivity and reproducibility of VOCs analysis from banana plants. We have identified 11 VOCs for the Cavendish, mainly (E,E)-α-farnesene (87.90 ± 11.28 ng/μl), methyl salicylate (33.82 ± 14.29) and 6-methyl-5-hepten-2-one (29.60 ± 11.66), and 14 VOCs for the Pacific Plantain cultivar, mainly (Z,E)-α-farnesene (799.64 ± 503.15), (E,E)-α-farnesene (571.24 ± 381.70) and (E) β ocimene (241.76 ± 158.49). This exploratory study paves the way for an in-depth characterisation of VOCs emitted by Musa plants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Source Apportionment Of High Reactive Volatile Organic Compounds In a Region With The Massive Hydrocarbon Processing Industries

In the Persian Gulf region, conditions are highly favorable for ozone air pollution and the region is a hot spot of photochemical smog. The vast activities in processing oil and gas play a major role in it. It was found that the elevated concentrations of reactive hydrocarbons co-emitted with nitrogen oxides from Hydrocarbon Processing facilities lead to substantial ozone production. South Pars...

متن کامل

A Reactivity Based Emission Inventory for the South Pars and Its Implication for Ozone Pollution Control

The South Pars zone in Iran encompasses the largest gas refineries and petrochemical complexes in the world. In the South Pars zone, elevated concentrations of reactive hydrocarbons co-emitted with nitrogen oxides from industrial facilities lead to substantial ozone production downwind. To understand the role of these emissions on the ozone formation and, to formulate appropriate control st...

متن کامل

Volatile Compound-Mediated Interactions between Barley and Pathogenic Fungi in the Soil

Plants are able to interact with their environment by emitting volatile organic compounds. We investigated the volatile interactions that take place below ground between barley roots and two pathogenic fungi, Cochliobolus sativus and Fusarium culmorum. The volatile molecules emitted by each fungus, by non-infected barley roots and by barley roots infected with one of the fungi or the two of the...

متن کامل

Analysis of Volatile Organic Compounds Emitted by Plant Growth-Promoting Fungus Phoma sp. GS8-3 for Growth Promotion Effects on Tobacco

We extracted volatile organic compounds (VOCs) emitted by a plant growth-promoting fungus (PGPF) Phoma sp. GS8-3 by gas chromatography and identified them by mass spectrometry. All of the identified compounds belonged to C4-C8 hydrocarbons. Volatiles varied in number and quantity by the culture period of the fungus (in days). 2-Methyl-propanol and 3-methyl-butanol formed the main components of ...

متن کامل

Red:far-red light conditions affect the emission of volatile organic compounds from barley (Hordeum vulgare), leading to altered biomass allocation in neighbouring plants.

BACKGROUND AND AIMS Volatile organic compounds (VOCs) play various roles in plant-plant interactions, and constitutively produced VOCs might act as a cue to sense neighbouring plants. Previous studies have shown that VOCs emitted from the barley (Hordeum vulgare) cultivar 'Alva' cause changes in biomass allocation in plants of the cultivar 'Kara'. Other studies have shown that shading and the l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017